May 12, 2023
Glass Fibers in Lunar Regolith Could Help Build Structures on the Moon
Through the Artemis Program, NASA plans to send the first astronauts to the moon in over fifty years. Before the decade is over, this program aims to establish the infrastructure that will allow for a “sustained program of lunar exploration and development.” The European Space Agency (ESA) also has big plans, which include the creation of a Moon Village that will serve as a spiritual successor to the International Space Station (ISS). China and Roscosmos also came together in June 2021 to announce that they would build the International Lunar Research Station (ILRS) around the lunar south pole. In all cases, space agencies plan to harvest local resources to meet their construction and long-term needs – a process known as In-Situ Resource Utilization (ISRU). Based on samples returned by the fifth mission of the Chinese Lunar Exploration Program (Chang’e-5), a team of researchers from the Chinese Academy of Sciences (CAS) identified indigenous glass fibers for the first time. According to a paper they authored, these fibers were formed by past impacts in the region and could be an ideal building material for future lunar bases. The work was led by Rui Zhao, Laiquan Shen, Dongdong Xiao, and Chao Chang from the CAS Institute of Physics (IOP) in Beijing. They were joined by researchers from the Center of Materials Science and Optoelectronics Engineering at the University of Chinese Academy of Sciences (UCAS), the Songshan Lake Materials Laboratory, the Qian Xuesen Laboratory of Space Technology, the China Academy of Space Technology (CAST), and the College of Engineering and Applied Sciences at Nanjing University. The team’s paper, “Diverse glasses revealed from Chang’E-5 lunar regolith,” recently appeared in the National Science Review. Schematic of the origins of diverse lunar glasses and the corresponding lunar activities. Credit: Laiquan Shen, R.Z. et al. (2023) As the IOP team indicated in their paper, lunar glasses are an important component of lunar soils and are produced by various processes. Altogether, they identified five types based on the formation process involved: volcanic, impact, adhered, deposited, and irradiated. These glasses can remain stable for billions of years, providing a geological record of the Moon and leading to a better understanding of its formation and evolution. This includes questions relating to the duration of volcanism, the Late Heavy Bombardment, the origins of lunar water, and the presence of a lunar magnetic field. The team determined that impacts are the most active processes on the lunar surface, as they are “highly heterogeneous in both temporal and spatial scale” – i.e., impacts are an ongoing phenomenon, unlike volcanism and other geological activity that ended billions of years ago. By studying the diverse glasses in the 1.73 kg (3.8 lbs) of lunar regolith returned by Chang’E-5 (CE-5) from the northern mare region Oceanus Procellarum, they were able to clarify their origins and attribute to three main mechanisms: impact, deposition, and irradiation. As they state, the samples were quite different from those returned by the Apollo astronauts and the Soviet Luna program, suggesting that different mechanisms were at work in Oceanus Procellarum: “Compared with previous Apollo and Luna returned samples that are limited in narrow volcanism ages of 3.9-3.0 Ga and cover only about 4.4% of the lunar nearside surface, the CE-5 samples are collected from the youngest lunar region dated to 2.0 Ga and higher mid-high latitude, allowing the Moon to be studied in an extended spatiotemporal range. Preliminary characterizations show that the CE-5 samples are mature samples, but have a significantly lower glass content of 8.3%–20.0% than that of Apollo samples (25.4%–72.3%), implying quite different space environment from Apollo sites.” For ESA’s 3D-printed lunar base concept, Foster+Partners devised a weight-bearing ‘catenary’ dome design with a cellular structured wall to shield against micrometeoroids and space radiation, incorporating a pressurized inflatable to shelter astronauts. Credit: ESA/Foster + Partners Upon characterizing the samples’ morphological, microstructural, and geochemical properties, the team found that the CE-5 samples contained various glassy materials. As shown in the image above, this included glass particles of various shapes, such as globules, ellipsoids, dumbbells, and teardrops (a to i). They also noted the presence of elongated glass fibers that (based on their elongation) ranged in shape from tadpoles (n), maces (o), and filaments (p). They further concluded that these fibers were formed by molten materials created by impacts that cooled upon contact with the lunar environment. These fibers would make for a highly-effective construction material, consistent with proposals for building lunar bases through ISRU. The IOP team indicated this by addressing previous attempts to fabricate artificial glass fibers from lunar regolith simulants in the lab. In short, their analysis demonstrated that these fibers could be harvested on the Moon and used to fabricate the necessary materials: “[Attemps were made using] lunar simulant materials to fabricate artificial glass fibers in laboratories for future lunar base construction. Our findings directly demonstrate that glass fibers can be produced in-situ on the Moon, which could inspire space fabrication of glass fibers such as homogeneous optical fibers and strengthening structural fibers required by future lunar bases.” Before space agencies can construct long-term habitats on the Moon, research that characterizes the lunar environment and its resources is absolutely essential. In addition to providing new insight into the many processes that have shaped the lunar surface over time, the IOP study could provide a pathway toward the creation of permanent bases on the Moon. This research could also inform future missions to Mars, which NASA and China plan to commence by 2033. These missions include the creation of surface habitats, and further characterization of the Martian environment could lead to specialized construction methods. Further Reading: CGTN, National Science Review The post Glass Fibers in Lunar Regolith Could Help Build Structures on the Moon appeared first on Universe Today.
Related Stories
Latest News
Top news around the world
Academy Awards

‘Oppenheimer’ Reigns at Oscars With Seven Wins, Including Best Picture and Director

Get the latest news about the 2024 Oscars, including nominations, winners, predictions and red carpet fashion at 96th Academy Awards

Around the World

Celebrity News

> Latest News in Media

Watch It
JoJo Siwa Reveals She Spent $50k on This Cosmetic Procedure
April 08, 2024
tilULujKDIA
Gypsy Rose Blanchard Files for Divorce from Ryan Anderson
April 08, 2024
kjqE93AL4AM
Bachelor Nation’s Trista Sutter Shares Update on Husband’s Battle With Lyme Disease | E! News
April 08, 2024
mNBxwEpFN4Y
Alan Tudyk Does All His Disney Voices
April 08, 2024
fkqBY4E9QPs
Bob Iger responds to critics who call Disney "too woke"
April 06, 2024
loZMrwBYVbI
Kirsten Dunst recites a classic cheer from 'Bring it On'
April 06, 2024
VHAca3r0t-k
Dr. Paul Nassif Offers Up Plastic Surgery Warning for Gypsy Rose Blanchard | TMZ
April 09, 2024
cXIyPm8mKGY
Reba McEntire Laughs at Joy Behar's Suggestion 'Jolene' is Anti-Feminist | TMZ TV
April 08, 2024
11Cyp1sH14I
NeNe Leakes Says She's Okay with Cheating If It's Done Respectfully | TMZ TV
April 08, 2024
IsjAeJFgwhk
Ben Affleck and Jennifer Lopez’s wedding was 20 years in the making
April 08, 2024
BU8hh19xtzA
Bianca Censori wears completely sheer tube dress and knee-high stockings for Kanye West outing
April 08, 2024
IkbdMacAuhU
Kelsea Ballerini tells trolls to ‘shut up’ about pantsless CMT Music Awards 2024 performance #shorts
April 08, 2024
G4OSTYyXcOc
TV Schedule
Late Night Show
Watch the latest shows of U.S. top comedians

Sports

Latest sport results, news, videos, interviews and comments
Latest Events
08
Apr
ITALY: Serie A
Udinese - Inter Milan
07
Apr
ENGLAND: Premier League
Manchester United - Liverpool
07
Apr
ENGLAND: Premier League
Tottenham Hotspur - Nottingham Forest
07
Apr
ITALY: Serie A
Juventus - Fiorentina
07
Apr
ENGLAND: Premier League
Sheffield United - Chelsea
07
Apr
ITALY: Serie A
Monza - Napoli
07
Apr
GERMANY: Bundesliga
Wolfsburg - Borussia Monchengladbach
07
Apr
ITALY: Serie A
Verona - Genoa
07
Apr
ITALY: Serie A
Cagliari - Atalanta
07
Apr
GERMANY: Bundesliga
Hoffenheim - Augsburg
07
Apr
ITALY: Serie A
Frosinone - Bologna
06
Apr
GERMANY: Bundesliga
Heidenheim - Bayern Munich
06
Apr
GERMANY: Bundesliga
Borussia Dortmund - Stuttgart
06
Apr
ENGLAND: Premier League
Brighton - Arsenal
06
Apr
ITALY: Serie A
Roma - Lazio
06
Apr
ENGLAND: Premier League
Crystal Palace - Manchester City
06
Apr
ITALY: Serie A
AC Milan - Lecce
04
Apr
ENGLAND: Premier League
Chelsea - Manchester United
04
Apr
ENGLAND: Premier League
Liverpool - Sheffield United
03
Apr
ENGLAND: Premier League
Arsenal - Luton
03
Apr
ENGLAND: Premier League
Manchester City - Aston Villa
02
Apr
ENGLAND: Premier League
West Ham United - Tottenham Hotspur
01
Apr
SPAIN: La Liga
Villarreal - Atletico Madrid
01
Apr
ITALY: Serie A
Lecce - Roma
01
Apr
ITALY: Serie A
Inter Milan - Empoli
31
Mar
ENGLAND: Premier League
Manchester City - Arsenal
31
Mar
SPAIN: La Liga
Real Madrid - Athletic Bilbao
31
Mar
ENGLAND: Premier League
Liverpool - Brighton
30
Mar
SPAIN: La Liga
Barcelona - Las Palmas
30
Mar
ENGLAND: Premier League
Brentford - Manchester United
30
Mar
ITALY: Serie A
Fiorentina - AC Milan
Find us on Instagram
at @feedimo to stay up to date with the latest.
Featured Video You Might Like
zWJ3MxW_HWA L1eLanNeZKg i1XRgbyUtOo -g9Qziqbif8 0vmRhiLHE2U JFCZUoa6MYE UfN5PCF5EUo 2PV55f3-UAg W3y9zuI_F64 -7qCxIccihU pQ9gcOoH9R8 g5MRDEXRk4k
Copyright © 2020 Feedimo. All Rights Reserved.